Second LPT Challenge Case 1: Results

This page presents published results for Case 1 of the 2nd LPT Challenge. The link for result submission, as well as details about the test case and  rules for result are given there.

Tables can be ordered according to each of the quantities reported. Clicking on an algorithm name in a table will open a page gathering its result, together with information on the submitter.

Definition of performance metrics

Evaluation pertains to both particle localization, at the two pulse times t0 and t1, and estimation of the displacement vectors. For either particles or vectors, we count :

  • a True Positive (TP) if a ground truth (GT) particle is found in the neighborhood of a detection (maximum componentwise distance less than 1 voxel). For vectors, both detections should be TPs and associated to the same GT particle.
  • a False Negative (FN, a.k.a. missed particle) if there is no detection in the neighborhood of a GT particle. A FN vector is a GT vector that is not associated to a TP vector.
  • a False Positive (FP, a.k.a. ghost particle/vector) particle/vector when it is not a TP particle/vector.

Precision and Recall are derived quantities reflecting the detection performance, defined as:

 

Root-mean-square (rms) errors, whether on particle position, velocity or acceleration, are defined by considering only the TP within the result. Corresponding units are as follows:

  • Position errors (raw and fitted) are given in voxel, with a voxel size here equal to 110 µm
  • Velocity errors are dimensionless, with corresponding reference velocity Vinf = 0.2 m/s
  • Acceleration errors are dimensionless, with corresponding reference acceleration Ainf = Vinf2/D = 40 m/s2, where D = 0.1 m is the channel half-width (see there for more information on the physical setup).

Below, we provide tables showing these quantities for all test points. Then, we show figures comparing these quantities among participants, as well as groups of error slices for velocity and acceleration at a given test point.

dt: 1
Algorithm Sort descending Institution Precision Recall #TP #FP #FN Raw pos. rms error Pos. rms error X pos. rms error Y pos. rms error Z pos. rms error Vel. rms error X vel. rms error Y vel. rms error Z vel. rms error Acc. rms error X acc. rms error Y acc. rms error Z acc. rms error
PaIRS University of Naples Federico II 0.999 0.991 94017 105 868 0.1680 0.1340 0.0595 0.0622 0.1030 0.0117 0.0061 0.01 0.0075 1.2700 0.6840 0.7230 0.7930
STB DLR 0.999 0.995 94411 69 474 0.1450 0.1160 0.0501 0.0534 0.0902 0.0090 0.0043 0.00 0.0068 1.3000 0.6700 0.6310 0.9180
STB@DaVis LaVision GmbH 0.998 0.991 93985 202 900 0.2140 0.1620 0.0733 0.0787 0.1220 0.0181 0.0095 0.01 0.0111 1.3500 0.7270 0.7730 0.8270
dt: 2
Algorithm Sort descending Institution Precision Recall #TP #FP #FN Raw pos. rms error Pos. rms error X pos. rms error Y pos. rms error Z pos. rms error Vel. rms error X vel. rms error Y vel. rms error Z vel. rms error Acc. rms error X acc. rms error Y acc. rms error Z acc. rms error
PaIRS University of Naples Federico II 0.999 0.989 93924 113 1036 0.1700 0.1420 0.0660 0.0675 0.1070 0.0155 0.0081 0.01 0.0095 1.4300 0.7610 0.8410 0.8630
STB DLR 0.999 0.994 94424 92 536 0.1460 0.1230 0.0539 0.0565 0.0956 0.0098 0.0045 0.00 0.0075 1.2600 0.6430 0.6180 0.8840
STB@DaVis LaVision GmbH 0.994 0.978 92841 538 2119 0.2210 0.2130 0.1040 0.1150 0.1460 0.0236 0.0126 0.01 0.0141 1.4800 0.7900 0.8810 0.8830
dt: 3
Algorithm Sort descending Institution Precision Recall #TP #FP #FN Raw pos. rms error Pos. rms error X pos. rms error Y pos. rms error Z pos. rms error Vel. rms error X vel. rms error Y vel. rms error Z vel. rms error Acc. rms error X acc. rms error Y acc. rms error Z acc. rms error
PaIRS University of Naples Federico II 0.998 0.985 93569 179 1423 0.1750 0.1650 0.0790 0.0828 0.1180 0.0192 0.0104 0.01 0.0115 1.5500 0.8530 0.9060 0.9250
STB DLR 0.999 0.993 94366 114 626 0.1470 0.1330 0.0580 0.0602 0.1030 0.0114 0.0059 0.01 0.0081 1.2700 0.6600 0.6260 0.8870
STB@DaVis LaVision GmbH 0.989 0.929 88258 955 6734 0.2460 0.2840 0.1430 0.1580 0.1880 0.0274 0.0151 0.02 0.0164 1.5700 0.8570 0.9280 0.9260

2nd LPT Challenge Case 1 results