Second LPT Challenge Case 2: Two-Pulse results

This page presents published results for the TP (Two-Pulse) case of the 2nd LPT Challenge Case 2. The link for result submission, as well as details about the test case and rules for result formatting are given there.

Tables can be ordered according to each of the quantities reported. Clicking on an algorithm name in a table will open a page gathering its result, together with information on the submitter.

Definition of performance metrics

Evaluation pertains to both particle localization, at the two pulse times t0 and t1, and estimation of the displacement vectors. For this specific test case, where a subset of the particles are viewed by only 2 or 3 cameras at low I/U ratio, quantities for performance evaluation are estimated on the set of particles which are viewed by all 4 cameras. For either particles or vectors, we count:

  • a True Positive (TP) if a ground truth (GT) particle is found in the neighborhood of a detection (maximum componentwise distance less than 1 voxel). For vectors, both detections should be TPs and associated to the same GT particle.
  • a False Negative (FN, a.k.a. missed particle) if there is no detection in the neighborhood of a GT particle. A FN vector is a GT vector that is not associated to a TP vector.
  • a False Positive (FP, a.k.a. ghost particle/vector) particle/vector when it is not a TP particle/vector.

Precision and Recall are derived quantities reflecting the detection performance, defined as:

 

Root-mean-square (rms) error on particle position or displacement are defined by only considering the TP within the result. 

In the tables, they are given in voxel, with a voxel size here equal to 30.5 µm; figures also show these errors in mm. Conversion from displacement to velocities can be done straightforwardly by considering the inter-frame time, set to 40 µs; for reference, the free-stream velocity is here equal to 10 m/s.

Below the tables, we provide plots comparing some of these quantities among participants, as well as displacement error slices for selected test points.

ppp: 0.025
Algorithm Sort descending Institution I/U ratio Mie Prec. t0 Recall t0 #FN t0 #TP t0 #FP t0 Pos. rms error t0 X pos. rms error t0 Y pos. rms error t0 Z pos. rms error t0 Vector Prec. Vector Recall #TP vectors #FP vectors #FN vectors Disp. rms error
ITE-PTV ONERA; CEA 0.99 Off 1 0.996 183 50364 1 0.0506 0.0269 0.0273 0.0331 1 0.996 50362 3 185 0.071
TP-STB DLR 0.99 Off 1 0.997 172 50375 0 0.0502 0.0267 0.0269 0.0329 1 0.996 50370 5 177 0.0708
TP-STB@DaVis LaVision GmbH 0.99 Off 1 0.971 1488 49059 0 0.053 0.0282 0.0283 0.0348 1 0.97 49047 12 1500 0.0743
VICCTOR ONERA; CEA 0.99 Off 1 0.995 253 50294 1 0.0508 0.0271 0.0272 0.0334 0.999 0.994 50252 43 295 0.0716
ppp: 0.05
Algorithm Sort descending Institution I/U ratio Mie Prec. t0 Recall t0 #FN t0 #TP t0 #FP t0 Pos. rms error t0 X pos. rms error t0 Y pos. rms error t0 Z pos. rms error t0 Vector Prec. Vector Recall #TP vectors #FP vectors #FN vectors Disp. rms error
ITE-PTV ONERA; CEA 0.99 Off 1 0.994 575 100644 7 0.053 0.0283 0.0283 0.0347 1 0.994 100621 30 598 0.0733
TP-STB DLR 0.99 Off 1 0.998 182 101037 0 0.0517 0.0277 0.0276 0.0339 1 0.998 101008 29 211 0.073
TP-STB@DaVis LaVision GmbH 0.99 Off 1 0.986 1411 99808 0 0.0571 0.0305 0.0305 0.0375 0.999 0.985 99740 68 1479 0.0788
VICCTOR ONERA; CEA 0.99 Off 1 0.994 656 100563 10 0.053 0.0283 0.0281 0.0349 0.999 0.992 100427 146 792 0.0744
ppp: 0.08
Algorithm Sort descending Institution I/U ratio Mie Prec. t0 Recall t0 #FN t0 #TP t0 #FP t0 Pos. rms error t0 X pos. rms error t0 Y pos. rms error t0 Z pos. rms error t0 Vector Prec. Vector Recall #TP vectors #FP vectors #FN vectors Disp. rms error
ITE-PTV ONERA; CEA 0.46 On 0.696 0.315 145977 66982 29286 0.41 0.221 0.219 0.266 0.671 0.303 64580 31688 148379 0.569
ITE-PTV ONERA; CEA 0.99 On 0.896 0.726 44370 117706 13619 0.339 0.181 0.18 0.222 0.889 0.72 116692 14633 45384 0.466
ITE-PTV ONERA; CEA 0.99 Off 1 0.991 1414 160346 8 0.055 0.0295 0.0292 0.0361 1 0.991 160300 54 1460 0.0755
ITE-PTV ONERA; CEA 0.46 Off 0.956 0.897 22032 191921 8729 0.107 0.057 0.0567 0.0712 0.953 0.894 191305 9345 22648 0.15
TP-STB DLR 0.46 On 0.479 0.346 139323 73636 79943 0.271 0.146 0.147 0.175 0.46 0.331 70575 83004 142384 0.346
TP-STB DLR 0.99 On 0.853 0.643 57900 104176 17981 0.242 0.132 0.131 0.154 0.844 0.636 103115 19042 58961 0.296
TP-STB DLR 0.99 Off 1 0.997 420 161340 1 0.0535 0.0285 0.0284 0.0351 0.999 0.997 161251 90 509 0.0751
TP-STB DLR 0.46 Off 0.933 0.999 241 213712 15385 0.144 0.0765 0.0767 0.0953 0.932 0.998 213618 15479 335 0.2
TP-STB@DaVis LaVision GmbH 0.46 On 0.964 0.706 62521 150438 5607 0.259 0.141 0.14 0.165 0.957 0.701 149356 6689 63603 0.349
TP-STB@DaVis LaVision GmbH 0.99 On 0.99 0.912 14232 147844 1560 0.203 0.109 0.11 0.131 0.986 0.909 147367 2037 14709 0.261
TP-STB@DaVis LaVision GmbH 0.99 Off 1 0.99 1647 160113 1 0.0622 0.0332 0.033 0.0409 0.999 0.989 159986 128 1774 0.0848
TP-STB@DaVis LaVision GmbH 0.46 Off 0.994 0.972 5949 208004 1302 0.15 0.0804 0.0804 0.0986 0.993 0.971 207788 1518 6165 0.208
VICCTOR ONERA; CEA 0.99 On 0.971 0.955 7325 154751 4650 0.196 0.106 0.106 0.126 0.965 0.949 153809 5592 8267 0.259
VICCTOR ONERA; CEA 0.99 Off 1 0.995 778 160982 75 0.0554 0.0294 0.0295 0.0366 0.998 0.994 160777 280 983 0.0778
VICCTOR ONERA; CEA 0.46 Off 0.948 0.927 15555 198398 10830 0.0853 0.0454 0.0461 0.0555 0.943 0.922 197257 11971 16696 0.119
VICCTOR ONERA; CEA 0.46 On 0.872 0.667 70820 142139 20786 0.2 0.107 0.107 0.131 0.86 0.658 140046 22879 72913 0.273
ppp: 0.12
Algorithm Sort descending Institution I/U ratio Mie Prec. t0 Recall t0 #FN t0 #TP t0 #FP t0 Pos. rms error t0 X pos. rms error t0 Y pos. rms error t0 Z pos. rms error t0 Vector Prec. Vector Recall #TP vectors #FP vectors #FN vectors Disp. rms error
ITE-PTV ONERA; CEA 0.99 Off 1 0.988 2862 240596 34 0.0585 0.0313 0.0312 0.0383 0.999 0.988 240501 129 2957 0.0796
TP-STB DLR 0.99 Off 1 0.998 376 243082 3 0.0562 0.03 0.0301 0.0369 0.999 0.998 242947 138 511 0.0788
TP-STB@DaVis LaVision GmbH 0.99 Off 1 0.992 1956 241502 1 0.0701 0.0374 0.0372 0.0462 0.999 0.991 241322 181 2136 0.0948
VICCTOR ONERA; CEA 0.99 Off 1 0.994 1429 242029 42 0.0581 0.031 0.031 0.0382 0.998 0.992 241523 548 1935 0.083
ppp: 0.16
Algorithm Sort descending Institution I/U ratio Mie Prec. t0 Recall t0 #FN t0 #TP t0 #FP t0 Pos. rms error t0 X pos. rms error t0 Y pos. rms error t0 Z pos. rms error t0 Vector Prec. Vector Recall #TP vectors #FP vectors #FN vectors Disp. rms error
ITE-PTV ONERA; CEA 0.99 Off 1 0.987 4292 320205 46 0.062 0.0331 0.0331 0.0406 0.999 0.986 320014 237 4483 0.0836
TP-STB DLR 0.99 Off 1 0.998 767 323730 2 0.06 0.032 0.0319 0.0395 0.999 0.997 323495 237 1002 0.0832
TP-STB@DaVis LaVision GmbH 0.99 Off 1 0.992 2447 322050 3 0.0799 0.0426 0.0425 0.0525 0.999 0.992 321772 281 2725 0.107
VICCTOR ONERA; CEA 0.99 Off 0.999 0.994 2022 322475 194 0.0608 0.0324 0.0324 0.0399 0.998 0.992 321894 775 2603 0.0855
ppp: 0.2
Algorithm Sort descending Institution I/U ratio Mie Prec. t0 Recall t0 #FN t0 #TP t0 #FP t0 Pos. rms error t0 X pos. rms error t0 Y pos. rms error t0 Z pos. rms error t0 Vector Prec. Vector Recall #TP vectors #FP vectors #FN vectors Disp. rms error
ITE-PTV ONERA; CEA 0.99 Off 0.591 0.183 331393 74034 51305 0.389 0.208 0.208 0.255 0.544 0.168 68156 57183 337271 0.519
TP-STB DLR 0.99 Off 1 0.995 1989 403438 6 0.0655 0.0349 0.0349 0.0431 0.999 0.994 403026 418 2401 0.0897
TP-STB@DaVis LaVision GmbH 0.99 Off 1 0.992 3080 402347 5 0.0873 0.0464 0.0465 0.0576 0.999 0.992 401994 358 3433 0.117
VICCTOR ONERA; CEA 0.99 Off 0.998 0.993 2975 402452 939 0.0663 0.0352 0.0353 0.0436 0.995 0.99 401442 1949 3985 0.0927
ppp: 0.25
Algorithm Sort descending Institution I/U ratio Mie Prec. t0 Recall t0 #FN t0 #TP t0 #FP t0 Pos. rms error t0 X pos. rms error t0 Y pos. rms error t0 Z pos. rms error t0 Vector Prec. Vector Recall #TP vectors #FP vectors #FN vectors Disp. rms error
TP-STB DLR 0.99 Off 1 0.995 2627 504000 13 0.0706 0.0376 0.0375 0.0465 0.999 0.994 503446 567 3181 0.0979

2nd LPT Challenge case 2 TP results